열역학 4-114.docx



열역학 Thermodynamics 5th Edition.

Fundamentals and Applications

-Yunus A. Cengel

-Michael A. Boles

-부준홍 김덕줄 김세웅 김수현 신세현 이교우 정우남 최경민 공역

McGraw-Hill



문제 4-114


R-134a 액체와 기체가 섞여 있는 피스톤-실린더 기구에 증기만 남을 때까지 열이 전달될 때,

최초 체적과, 행한 일, 총 열전달량을 계산한다.


가정: 피스톤 실린더 기구는 밀폐 및 고정되어 있어 운동 및 위치에너지 변화와 마찰이 없다.

주어진 과정은 준평형 과정이다.


풀이: 피스톤 실린더 기구 내부의 R-134a를 계로 선택하면 계의 경계를 통해 R-134a로 전달되는 열만 있는 정압 팽창 과정이다.

따라서 주어진 계의 에너지 평형식은 아래와 같다.


처음 피스톤-실린더 기구 안에는 총 질량의 75%가 액체이므로 포화액-증기 혼합 상태이며 건도가 아래와 같다.


따라서 부록의 Saturated regfrigerant-134a-Pressure table TABLE A-12 압력에 대한 포화 R-134a 표 TABLE A-12를 참고하여

비체적과 엔탈피는 아래와 같고,


(a) 최초 체적은 아래와 같이 계산된다.


이제 피스톤-실린더 기구에 증기만 남을 때까지 열이 전달되므로 R-134a의 최종 상태는 포화 증기 상태이다.

그러므로 최종 상태에서의 R-134a의 체적은 아래와 같다.


(b) 그러므로 행해진 일은 아래와 같이 계산된다.


이때 처음과 최종 상태의 엔탈피는 아래와 같으므로


(c) 과정동안 R-134a로 전달된 총 열량은 아래와 같이 계산된다.


Posted by 귀여운촌아
:

열역학 4-113.docx



열역학 Thermodynamics 5th Edition.

Fundamentals and Applications

-Yunus A. Cengel

-Michael A. Boles

-부준홍 김덕줄 김세웅 김수현 신세현 이교우 정우남 최경민 공역

McGraw-Hill



문제 4-113


전기 저항이 내부에 설치된 피스톤-실린더 기구에 포화증기가 들어 있고 전원이 공급되어 가열될 때,

전기 저항에 공급된 전류를 계산하고 T-v 선도에 과정을 나타낸다.


가정: 피스톤-실린더 기구는 밀폐되어 있고 마찰은 없다. 또한 고정되어 있으므로 운동 및 위치에너지 변화는 없다고 가정한다.

전기 저항기에서 발생한 열은 포화 증기에 균일하고 일정하게 전달된다. 전기 저항기에 공급되는 전류는 일정하다.

문제에 주어진 과정은 준평형 과정이다.


풀이: 피스톤 실린더 기구 내의 R-134a는 포화 증기 상태이므로 부록의 Saturated regrigerant-134a-Pressure table TABLE A-12

압력에 대한 포화 R-134a 표 TABLE A-12을 참고하여 처음 온도인 포화 온도 및 비체적, 엔탈피는 다음과 같다.


피스톤 실린더 내부를 계로 선택하면 계의 경계를 통과하는 에너지와 팽창일만 존재하는 정압 팽창과정이다.

따라서 계의 에너지 평형식은 다음과 같다.


최종 상태에서의 R-134a는 포화 증기에서 가열되었으므로 과열 증기 상태이다.

이때 온도는 아래와 같이 주어져 있고 압력은 일정하므로


부록의 Superheated regrigerant-134a TABLE A-13 과열 R-134a 증기표 TABLE A-13을 참고하여

비체적과 엔탈피는 다음과 같다.


따라서 전기 저항 가열기를 통해 R-134a에 공급된 에너지는 다음과 같이 계산된다.


그러므로 6분 동안 전기 저항 가열기에 공급된 전류는 아래와 같이 계산된다.


Posted by 귀여운촌아
:

열역학 4-32.docx


열역학 Thermodynamics 5th Edition.

Fundamentals and Applications

-Yunus A. Cengel

-Michael A. Boles

-부준홍 김덕줄 김세웅 김수현 신세현 이교우 정우남 최경민 공역

McGraw-Hill



문제 4-32


피스톤 실린더 기구에 들어 있는 R-134a가 일정 압력으로 냉각될 때, 열손실량을 구하고 T-v 선도에 과정을 나타낸다.

가정: 피스톤-실린더 기구는 밀폐 및 고정되어 있으며 피스톤의 위치에너지 및 운동에너지 변화, 마찰 등은 고려하지 않는다.
또한 피스톤 및 실린더에 전달되는 열에너지는 무시할 수 있다.
실린더 내에는 순수한 R-134a만 들어 있으며 주어진 과정은 준평형 과정이다.

풀이: 피스톤-실린더 기구 내부의 R-134a 전체를 계로 선택하면 피스톤-실린더 기구는 고정되어 있으므로 위치 및 운동에너지 변화가 없다.
따라서 계의 에너지 변화는 내부에너지 변화만 있으므로 아래와 같고,


R-134a는 외부로 열이 전달되어 냉각되므로 계 외부로의 열전달이 있다. 냉각 과정에서는 체적이 감소하고 피스톤이 하강한다고 할 때,
계는 움직이는 경계를 가지고 있으므로 계 내부로의 경계일이 존재하고 계의 경계를 통과하는 질량은 없다.
이때 계로의 열 유입과 계가 한 일이 기준이므로 계를 통과하는 에너지는 다음과 같다.

그러므로 에너지 평형은 다음과 같다.

선택된 계는 질량 변화가 없는 밀폐계이므로 내부에너지 변화는 다음과 같고,

주어진 피스톤-실린더 기구는 과정 동안 압력이 일정하게 유지되며 준평형 과정이므로 계에 행해진 일은 다음과 같다.

따라서 에너지 평형식은 다음과 같고,

계의 엔탈피 변화가 열손실량이 된다. 이때 최초 상태의 R-134a는
부록의 온도에 대한 포화 R-134a 표 TABLE A-11 Saturated refrigerant-134a-Temperature table TABLE A-11을 참고하면
주어진 온도와 압력에서 과열 증기임을 알 수 있다.
따라서 R-134a 과열 증기표 TABLE A-13 Superheated refregerant-134a TABLE A-13을 참고하여 최초 상태의 엔탈피는 다음과 같고,

최종 상태에서는 포화 R-134a 표를 참고할 때 압축액 상태이다.
그러므로 주어진 온도에서의 포화액으로 근사하여 온도에 대한 포화 R-134a 표 TABLE A-11
Saturated refrigerant-134a-Temperature table TABLE A-11을 참고하거나 EES를 이용하여 엔탈피를 다음과 같이 구할 수 있다.

주어진 값을 대입하고 계산하면 열손실량은 다음과 같다.

피스톤-실린더 기구 내의 R-134a는 과열증기에서 압축액까지 일정한 압력으로 냉각되므로
과열증기에서 포화 증기, 포화액-증기 혼합물, 포화액을 거쳐 압축액이 된다. 따라서 EES를 이용하여 T-v 선도에 나타내면 다음과 같다.




Posted by 귀여운촌아
:

열역학 4-27.docx



열역학 Thermodynamics 5th Edition.

Fundamentals and Applications

-Yunus A. Cengel

-Michael A. Boles

-부준홍 김덕줄 김세웅 김수현 신세현 이교우 정우남 최경민 공역

McGraw-Hill



문제 4-27


R-134a가 들어있는 견고한 용기에 열을 가하여 특정 압력에 도달했을 때,
냉매의 질량과 열전달량을 계산하고 P-v 선도에 나타낸다.

가정: 견고한 용기는 잘 밀폐되어 있고 체적은 일정하며, 순수한 R-134a만 들어 있다.
견고한 용기는 고정되어서 운동에너지 변화와 위치 에너지 변화는 없다.
용기로의 열전달은 고려하지 않는다.

풀이: 주어진 견고한 용기와 R-134a 전체를 계로 선택하면
과정 동안에 계의 경계를 통과하는 질량이 없으므로 이 계는 밀폐계라고 할 수 있다. 
또한 용기의 체적은 일정하므로 경계일은 없다.
따라서 이 고정 밀폐계의 에너지 변화는 유입된 열에너지만 있으며,
이는 R-134a의 내부 에너지 변화와 같다. 그러므로 계의 에너지 평형은 다음과 같다.


이때 R-134a의 건도가 처음 상태에 주어져 있으므로 포화액-증기 혼합 상태이다.
따라서 부록의 압력에 대한 포화 R-134a 표 TABLE A-12 Saturated refrigerant-134a-Pressure table TABLE A-12를
참고하면 주어진 압력에서 비체적은 다음과 같다.

(a) 따라서 용기 속의 R-134a 냉매의 질량은 다음과 같이 계산된다.

견고한 용기의 체적과 R-134a의 질량은 일정하므로 최종 상태의 압력과 비체적을
압력에 대한 포화 R-134a 표 TABLE A-12 Saturated refrigerant-134a-Pressure table TABLE A-12를
참고하여 주어진 압력에 대한 비체적을 비교하면 다음과 같으므로

R-134a의 최종 상태는 과열증기 상태이다. (b) 이때 용기로 전달된 열전달량은
R-134a의 내부 에너지 변화와 같으므로 압력에 대한 포화 R-134a 표 TABLE A-12
Saturated refrigerant-134a-Pressure table TABLE A-12를 참고하여 최초 상태의 내부 에너지는 다음과 같고,

과열 R-134a 증기표 TABLE A-13 Supertheated refrigerant-134a TABLE A-13를
참고하거나 EES를 이용하여 최종 상태의 내부 에너지는 다음과 같다.

그러므로 열전달량은 다음과 같이 계산된다.

EES를 이용하여 주어진 과정은 P-v 선도에 나타내면 다음과 같다.

Posted by 귀여운촌아
:

열역학 4-9.docx


열역학 Thermodynamics 5th Edition.

Fundamentals and Applications

-Yunus A. Cengel

-Michael A. Boles

-부준홍 김덕줄 김세웅 김수현 신세현 이교우 정우남 최경민 공역

McGraw-Hill



문제 4-9


R-134a 포화액이 들어 있는 피스톤-실린더 기구가 일정 온도까지 정압과정으로 가열될 때, 이 과정 동안의 일을 계산한다.

가정: 피스톤-실린더 기구는 마찰이 없으며 냉매의 압력은 일정하게 유지된다. 피스톤-실린더 기구 내에는 순수한 R-134a만 들어 있다.
주어진 과정은 준평형 과정이다.

풀이: 처음에 피스톤-실린더 기구 내에는 R-134a 포화액만 들어있으므로
압력에 대한 포화 R-134a 표 Saturated refrigerant-134a-Pressure table TABLE A-12를 참고하면 비체적과 포화 온도는 아래와 같다.


따라서 피스톤-실린더 기구 내의 R-134a의 질량은 다음과 같다.

이때 일정한 압력으로 70℃까지 가열되므로 R-134a는 과열 증기 상태이다.
따라서 R-134a 과열 증기 표 Superheated refrigerant-134a TABLE A-13을 참고하면 나중 상태의 비체적은 아래와 같다.

문제에 주어진 과정은 압력이 일정하고 준평형 과정이므로 경계일은 다음과 같다.


Posted by 귀여운촌아
:

열역학 3-128.docx



열역학 Thermodynamics 5th Edition.

Fundamentals and Applications

-Yunus A. Cengel

-Michael A. Boles

-부준홍 김덕줄 김세웅 김수현 신세현 이교우 정우남 최경민 공역

McGraw-Hill



문제 3-128


주어진 R-134a의 상태량 변화를 P-v 선도 또는 T-v 선도에 화살표로 나타낸다.

풀이: (a) 주어진 압력과 비체적에서의 등온과정에 대한 압력변화이므로 주어진 비체적을
부록의 압력에 대한 포화 R-134a 표 Saturated refrigerant-134a-Pressure table TABLE A-12를 참고하여 비교하면 다음과 같으므로

포화액-증기 혼합 상태이며, 주어진 온도는 포화 온도가 된다. 따라서 등온 과정에서 온도는 다음과 같다.

주어진 처음과 마지막의 압력 변화에서 포화 온도는 압력에 대한 포화 R-134a 표 Saturated refrigerant-134a-Pressure table TABLE A-12를 참고하여 
다음과 같으므로

처음 압축액 상태에서 포화액, 포화액-증기 혼합, 포화 증기를 거쳐 과열 증기로 변하는 것을 알 수 있다.
처음 압축액 상태의 비체적은 등온 과정의 온도에 대한 포화액의 비체적으로 근사하며,
온도에 대한 포화 R-134a 표 Saturated refrigerant-134a-Temperature table TABLE A-11를 참고한다.
마지막 과열 증기 상태의 비체적은 R-134a 과열증기 표 Superheated refrigerant-134a TABLE A-13을 참고하여 각각 다음과 같다.

따라서 EES를 이용하거나 선형보간법을 이용하여 비체적을 구하고 정리하면 각각 다음과 같다.

이를 EES를 이용하여 P-v 선도에 정리하여 나타내면 다음과 같다.


(b) 주어진 비체적으로 일정한 과정에 대한 압력변화이므로 주어진 비체적을
부록의 온도에 대한 포화 R-134a 표 Saturated refrigerant-134a-Temperature table TABLE A-11를 참고하여 비교하면 다음과 같으므로

주어진 온도와 비체적에서는 포화액-증기 혼합 상태이며, 따라서 이때의 압력은 아래와 같이 포화 압력이 된다.

처음 상태의 압력과 마지막 상태의 압력에서 비체적은
압력에 대한 포화 R-134a 표 Saturated refrigerant-134a-Pressure table TABLE A-12를 참고하여 각각 다음과 같으므로

처음 상태는 과열 증기 상태이며 일정한 비체적으로 포화 증기, 포화액-증기 혼합 상태로 압력이 변화한다.
처음 상태의 온도를 구하기 위해 R-134a 과열증기 표 Superheated refrigerant-134a TABLE A-13 또는 EES를 참고하면 아래와 같고,

마지막 상태는 포화액-증기 혼합 상태이므로 이때의 온도는 포화 온도가 되며
압력에 대한 포화 R-134a 표 Saturated refrigerant-134a-Pressure table TABLE A-12를 참고하면 다음과 같다.

따라서 EES를 이용하여 각각을 정리하고 T-v 선도에 나타내면 다음과 같다.


Posted by 귀여운촌아
:

열역학 3-127.docx


열역학 Thermodynamics 5th Edition.

Fundamentals and Applications

-Yunus A. Cengel

-Michael A. Boles

-부준홍 김덕줄 김세웅 김수현 신세현 이교우 정우남 최경민 공역

McGraw-Hill



문제 3-127


R-134a에 대한 상태량 표를 완성한다.

가정: 주어진 상태량은 일정하게 유지되고 있다고 가정한다.

풀이: 부록의 압력에 따른 포화 R-134a 표 Saturated refrigerant-134a-Pressure table TABLE A-12를 참고하면
320kPa에서 R-134a의 포화 온도는 다음과 같으므로


주어진 R-134a는 압축액 상태이다. 압축액의 비체적과 내부에너지는 포화액으로 근사할 수 있으나

압축액의 비체적과 내부에너지는 압력 변화에 영향을 거의 받지 않으므로
온도에 따른 포화 R-134a 표 Saturated refrigerant-134a-Temperature table TABLE A-11를 참고하거나 EES를 이용하여
비체적과 내부에너지를 구하면 다음과 같다.

문제에 주어진 온도는 압력에 따른 포화 R-134a 표 Saturated refrigerant-134a-Pressure table TABLE A-12를 참고하면
1000kPa에서 R-134a의 포화 온도와 같으므로 포화 상태임을 알 수 있다.
단, 포화액, 포화증기, 포화 액-증기 혼합 상태에서 포화 압력, 포화 온도가 모두 같으므로 정확한 비체적과 내부에너지는 알 수 없다.

온도에 따른 포화 R-134a 표 Saturated refrigerant-134a-Temperature table TABLE A-11를 참고하면
40℃에서 비체적은 포화 증기의 비체적에 비해 다음과 같으므로

과열 증기 상태이다. 따라서 부록의 과열 R-134a 증기표 Superheated refrigerant-134a TABLE A-13을 참고하면
주어진 온도와 비체적에서 압력과 내부에너지는 다음과 같다.

다음으로 압력에 따른 포화 R-134a 표 Saturated refrigerant-134a-Pressure table TABLE A-12를 참고하면
주어진 비체적은 180kPa에서 포화 상태의 비체적에 대해 다음과 같으므로

포화액-증기 혼합 상태이다. 따라서 주어진 상태의 온도는 포화 온도가 되며 내부에너지는 다음과 같다.

이때 주어진 비체적을 이용하여 건도를 계산하면 다음과 같다.

그러므로 포화액-증기 혼합 상태에서 내부에너지는 다음과 같이 계산된다.

다음으로 주어진 압력에 대한 내부에너지를 압력에 따른 포화 R-134a 표 Saturated refrigerant-134a-Pressure table TABLE A-12를 참고하여
비교하면 다음과 같다.

따라서 주어진 상태는 과열증기 상태이므로 부록의 과열 R-134a 증기표 Superheated refrigerant-134a TABLE A-13을 참고하면
주어진 상태에서 내부에너지는 다음과 같으므로

온도와 비체적은 다음과 같다.

따라서 EES 또는 선형보간법으로 온도를 구하면 다음과 같다.


Posted by 귀여운촌아
:

열역학 3-120.docx


열역학 Thermodynamics 5th Edition.

Fundamentals and Applications

-Yunus A. Cengel

-Michael A. Boles

-부준홍 김덕줄 김세웅 김수현 신세현 이교우 정우남 최경민 공역

McGraw-Hill



문제 3-120


체적을 알 수 없는 용기가 한 쪽에는 R-134a의 포화 액체가 들어 있고,
다른 한 쪽은 비어 있도록 칸막이로 나뉘어져 있을 때, 칸막이가 제거된 후의 상태를 이용하여 용기의 체적을 계산한다.

가정: 칸막이가 차지하는 체적은 무시한다. 용기는 완전히 밀폐, 그리고 단열되어 있다고 가정한다.

풀이: 칸막이가 제거되기 전 처음 상태는 포화 액체로 이때의 온도는 포화온도이다.
따라서 부록의 압력에 따른 포화 R-134a 표 Saturated refrigerant-134a-Pressure table TABLE A-12를 참고하여 포화 온도와 비체적은 다음과 같다.



그러므로 용기 내의 R-134a의 질량은 다음과 같다.

최종 상태의 R-134a의 온도와 압력을 포화 R-134a 표를 이용하여 고려해 볼 때, 칸막이가 제거된 후 최종 상태의 R-134a는 과열 증기 상태이다.
따라서 부록의 R-134a 과열 증기 표 Superheated refrigerant-134a TABLE A-13을 참고하여 최종 상태의 비체적은 다음과 같다.

용기 내의 R-134a 냉매의 질량 변화는 없으므로 용기의 전체 체적은 다음과 같이 계산된다.


Posted by 귀여운촌아
:

열역학 3-115.docx


열역학 Thermodynamics 5th Edition.

Fundamentals and Applications

-Yunus A. Cengel

-Michael A. Boles

-부준홍 김덕줄 김세웅 김수현 신세현 이교우 정우남 최경민 공역

McGraw-Hill



문제 3-115


과열증기의 R-134a가 일정한 압력에서 압축액이 될 때까지 냉각될 때, 이를 T-v 선도에 나타내고 체적 변화와 총 내부에너지 변화를 계산한다.

가정: R-134a의 압력은 균일하고 균일하며 질량의 변화는 없다고 가정한다.

풀이: 1.2MPa, 70℃의 과열 증기 상태 R-134a의 비체적과 내부에너지는 EES 또는
R-134a 과열증기표 Superheated refrigerant-134a TABLE A-13을 참고하여 다음과 같다.

1.2Mpa, 20℃ 압축액 상태의 비체적과 내부에너지는


온도에 따른 포화 R-134a 표 Saturated refrigerant-134a-Pressure table TABLE A-11를 참고하여 근사하면 다음과 같다.

(b) 따라서 체적 변화는 다음과 같이 계산되며

(c) 총 내부에너지 변화는 다음과 같다.

추가로 EES를 이용하여 정확한 값을 구하면 체적 변화와 총 내부에너지 변화는 다음과 같다.

(a) 과열증기에서 일정한 압력으로 압축액까지 냉각되므로 R-134a는 과열증기에서 포화증기, 포화액-증기 혼합 상태, 포화액 상태를 거쳐 압축액이된다.
따라서 EES를 이용하여 T-v 선도에 나타내면 다음과 같고,

이를 정리하여 T-v 선도에 나타내면 다음과 같다.


Posted by 귀여운촌아
:

열역학 3-113.docx



열역학 Thermodynamics 5th Edition.

Fundamentals and Applications

-Yunus A. Cengel

-Michael A. Boles

-부준홍 김덕줄 김세웅 김수현 신세현 이교우 정우남 최경민 공역

McGraw-Hill



문제 3-113


견고한 용기에 R-134a 증기가 냉각되어 처음 응축되기 시작할 때의 압력을 계산하고 P-v 선도에 나타내라.

가정: 용기의 체적은 일정하며 용기는 완전히 밀폐되어 있다.

풀이: 처음 R-134a의 비체적은 용기의 체적과 R-134a 증기의 질량을 이용하여 다음과 같고,



용기 내부의 압력에서의 비체적을 EES 또는 부록의
압력에 대한 R-134a 포화액-증기표 Saturated regrigerant-134a-Pressure table TABLE A-12를 참고하여 구하면 다음과 같다.

따라서 R-134a는 과열증기 상태에서 어떠한 유출입이 없이 R-134a가 처음 응축하기 시작할 때까지
즉, R-134a가 포화 증기 상태가 될 때까지 냉각된다. 또한 이 과정에서 용기의 체적과 R-134a의 질량은 일정하게 유지되므로
비체적이 일정하게 유지되는 냉각과정이다. 따라서 주어진 비체적에서 포화 증기에 대한 압력을
EES 또는 부록의 압력에 대한 R-134a 포화액-증기표 Saturated regrigerant-134a-Pressure table TABLE A-12를 참고하여 구하면 다음과 같다.

그러므로 EES를 이용하여 P-v 선도에 나타내면 다음과 같다.


이를 알아 보기 쉽게 수정하면 아래와 같다.


Posted by 귀여운촌아
: